Tag Archives: Mean Squared Error

Regularization Techniques to Improve Model Generalization

Introduction In our last discussion, we explored dropout regularization techniques, which involve randomly setting a fraction of the activations to zero during training. This helps prevent overfitting by encouraging the network to learn redundant representations and improving generalization. Today, we will extend our focus to other regularization methods, including L1 and L2 regularization, label smoothing,…

Read More